Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency.
نویسندگان
چکیده
BACKGROUND AND PURPOSE We have demonstrated that copper-zinc superoxide dismutase (CuZn-SOD), a cytosolic isoenzyme of SODs, has a protective role in the pathogenesis of superoxide radical-mediated brain injury. Using mice bearing a disruption of the CuZn-SOD gene (Sod1), the present study was designed to clarify the role of superoxide anion in the pathogenesis of selective vulnerability after transient global ischemia. METHODS Sod1 knockout homozygous mutant mice (Sod1 -/-) with a complete absence of endogenous CuZn-SOD activity, heterozygous mutant mice (Sod1 +/-) with a 50% decrease in the activity, and littermate wild-type mice (male, 35 to 45 g) were subjected to global ischemia. Since the plasticity of the posterior communicating artery (PcomA) has been reported to influence the outcome of hippocampal injury, we assessed the relation between the plasticity of PcomAs and the decrease of regional cerebral blood flow in global ischemia. RESULTS The fluorescence intensity of hydroethidine oxidation, a measurement of ethidium fluorescence for superoxide radicals, was increased in mutant mice 1 day after both 5 and 10 minutes of global ischemia, compared with wild-type mice. Hippocampal injury in the PcomA hypoplastic brains showed significant exacerbation in mutant mice compared with wild-type littermates 3 days after 5 minutes of global ischemia, although a marked difference was not observed at 1 day. CONCLUSIONS These data suggest that superoxide radicals play an important role in the pathogenesis of delayed injury in the vulnerable hippocampal CA1 subregion after transient global ischemia.
منابع مشابه
Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.
Apoptotic neuronal cell death has recently been associated with the development of infarction after cerebral ischemia. In a variety of studies, CuZn-superoxide dismutase (CuZn-SOD) has been shown to protect the brain from ischemic injury. A possible role for CuZn-SOD-related modulation of neuronal viability is suggested by the finding that CuZn-SOD inhibits apoptotic neuronal cell death in resp...
متن کاملStroke outcome in double-mutant antioxidant transgenic mice.
BACKGROUND AND PURPOSE Both NO and superoxide cytotoxicity are important in experimental stroke; however, it is unclear whether these molecules act within parallel pathological pathways or as coreagents in a common reaction. We examined these alternatives by comparing outcomes after middle cerebral artery occlusion in male and female neuronal NO synthase (nNOS)-deficient (nNOS-/-) or human CuZn...
متن کاملMitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.
Mitochondrial injury has been implicated in ischemic neuronal injury. Mitochondria, producing adenosine triphosphate by virtue of electron flow, have been shown to be both the sites of superoxide anion (O2-) production and the target of free radical attacks. We evaluated these mechanisms in an in vivo cerebral ischemia model, using mutant mice with a heterozygous knock-out gene (Sod2 -/+) encod...
متن کاملTransgenic mice with increased copper/zinc-superoxide dismutase activity are resistant to hepatic leukostasis and capillary no-reflow after gut ischemia/reperfusion.
The objectives of this study were to (1) determine whether transgenic (Tg) mice overexpressing copper/zinc-superoxide dismutase (CuZn-SOD) are protected from the deleterious effects of gut ischemia/reperfusion (I/R) and (2) compare the effectiveness of Tg SOD overexpression in attenuating I/R injury to intravascularly administered CuZn-SOD or manganese (Mn)-SOD. The accumulation of fluorescentl...
متن کاملLiposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats.
We studied the role of superoxide radicals in the pathogenesis of ischemic brain injury using a model of focal cerebral ischemia in 102 rats and liposome-entrapped CuZn-superoxide dismutase, which can penetrate the blood-brain barrier and cell membranes efficiently. The bolus intravenous administration of 25,000 units of liposome-entrapped CuZn-superoxide dismutase elevated superoxide dismutase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 30 9 شماره
صفحات -
تاریخ انتشار 1999